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PREFACE 
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1.0 INTRODUCTION 

Theoretical calculations of exhaust nozzle performance are often required to aid in the 

evaluation of propulsion systems tested at the Arnold Engineering Development Center 

(AEDC). Computer codes have been available for axisymmetric transonic nozzle flow (Refs. 
I and 2) and the supersonic portion of axisymmetric flow fields can be calculated with the 
well-known method of characteristics. 

Even with axisymmetric nozzle geometries, the exhaust nozzle flow field is often three- 
dimensional (3-D) because of asymmetries in the entrance flow; future tests at AEDC will 
involve engines with truly three-dimensional nozzle geometry. Consequently, there is a 

pressing need for the capability to make computations of three-dimensional nozzle flow 
fields. A computer program has been developed for calculating the supersonic flow in 3-D 

nozzles (Ref. 3), but no program has been available for computing the subsonic-transonic 
flow in such nozzles. 

In the present study, a computer program has been developed for the inviscid subsonii:- 
transonic flow in three-dimensional propulsion nozzles. Of course, it is not limited to 
computation of propulsion nozzle performance; it is also applicable to many other 3-D 
internal flows. Because of the unavailability of detailed experimental data or other analytical 

solutions for 3-D nozzles, the current program was evaluated using axisymmetric nozzle 
geometry with the computational axis offset from the nozzle axis to simulate 3-D flow fields. 

2.0 ANALYSIS 

2.1 APPROACH 

The Eulerian equations in nonconservative form are solved for the three-dimensional, 
inviscid rotational flow of a perfect gas with a time-dependent numerical technique. The 
objective of this research was to extend and modify the successful two-dimensional (2-D) 
Cline method (Ref. l) to provide a 3-D capability. 

According to Ciine, long computation times associated with time-dependent 2-D 
calculations are usually required because inefficient algorithms or poor treatment of 
boundaries demand excessively fine computational meshes. Cline, using the MacCormack 
scheme coupled with characteristic boundary conditions, produced a 2-D code with 

reasonable computational times. His success motivated the present approach to the 3-D 
problem. An outline of the approach follows: 
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!. The Eulerian equations in nonconservative form are solved. 

2. Interior mesh point properties are computed using the efficient MacCormack 
finite difference scheme. 

3. The inlet and wall boundary mesh point properties are calculated using a 
reference-plane characteristic technique. 

4. Exit mesh point properties are calculated using, linear extrapolation for 
supersonic flow and a characteristics scheme for the subsonic case. 

. Singularities along the z-axis, attributable to the choice of a cylindrical 
coordinate system, are avoided by excluding the z-axis from the flow field 
calculations. 

6. Accumulation of truncation error is reduced by an alternating scheme for the 
backward-forward option in MacCormack's method. 

Note that items 4 and 5 are different from Cline's approach. The physical (z, r, 0) space is 
transformed into a right-circular cylinder computational domain (/j, 7/, ~') by a coordinate 
transformation. The computational mesh is uniform in the/L ~, and ~" directions. 

The physical space mesh has equal gpacing' in the axial (z) and circumferential (0) 
directions, whereas that in the radial (r) directions may be unequal. 

The temporal step size, At, is controlled by the Courant-Fredricks-Lewy (CFL) 
condition. In general, no smoothing or damping techniques are required to maintain 
stability. 

2.2 GOVERNING EQUATIONS 

The governing equations in cylindrical coordinates 
adiabatic 3-D flow of an ideal gas are 

Continuity: 

for time-dependent inviscid, 

Momentum: 

Dp 
~ +  V , ( p v )  = 0 (I) 
D t  

. . . .  I- 0 Dt p ~-r - 

(2) 
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I D',0 vr v0 I 1 0p 
+ ~ + - -  - 0 (3) Dt r pr a0 

-Dvz I 1 0p 
+ p- -oz = o (4) 

Energy: 

State: 

where 

and 

I D--~:-' I -  a2 D~ = 0 (5) 
Dl 

p = p R T  (0 

O() fl() 0() '0 0() 0() 
- ~ , ,  ~ ~- + v ( 7 )  Dt d! r t~r r aO z Oz 

V . ( p v )  = 1 0 ~ a 0 
r t~t (rp v r) 4-- - -  (PV0)+ ( v z) r O0 3z p ' (8) 

and where 0 is the density, vz is the axial velocity, Vr is the radial velocity, v0 is the 
circumferential velocity, p is the pressure, a is the local speed of sound, t is the time, and z, r, 
0 are the axial, radial, and circumferential coordinates. 

The physical space (z, r, 0) is mapped into a right-circular cylinder computation domain 
(~, ~/, ~) by the following coordinate transformation: 

r 0 ~ -  ~. , , 1 = - -  ¢ _ = - -  

where r,,. denotes the wall values, in the (~, 7, ~') coordinate system, Eqs. (1) through (5) 
become (where the subscripts outside parentheses indicate partial differentiation): 

7 
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C o n t i n u i t y :  

M o m e n t u m :  

(P)t 

a 2 P + 
r 

+ g,-=>~ - = ~ .  (v=)  v 

a2 ~v 0 

4--p (vo)¢ r 

"v r 
- , p - -  = 0 

r 

VC,) ~ "o 
(Vr)t + 4-Vz(Vr)~:+~-~ (Vr)~- 

v~ a 2 v 0 
+ (Vr) ~ = 0 r r 

,8 (p)~ 
4-7 

(9) 

(10) 

(~o), 
a 2 v 0 ~v 0 

-i= , a l - ~  ( , r e )  4 - - -  ( , T O )  ~"7 (Vo)~ r r] r ~" + v: (vo)e 

"r vO a2 ~r 
+ - -  (P),'t + (P)¢ r pr = 0 ( I I )  

-- a2 vo ~'0 
- -  + a- V ( v z )  4- (vz)r] r ~("0~4- v, (,,,)e 

I al  +- (P)~:* (P)T/ p 7 
= 0 (12) 

E n e r g y :  

a2 8 
(P)t + V (P)~7 + r vo (r)r/+ r vO (P)~'+ Vz (P)~: 

_ a  2 

4- V z 

I __ a£ v 0 $ v 0 
(P)L + V (P)r/ + r (P)T/ + ~ (P)~' 

(P)~I = o (13) 

8 
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where 

and 

m 

V = ]~ v r + a I v z 

I 
/3 = (~)r = - -  

r W 

: (.),. : - t 3 , 7 ( , . ) ,  

,1 
(C),. = (C), = 0 , ~ = (C)O - 

3.0 NUMERICAL METHOD 

The computational space is divided into four types of mesh points: interior, inlet, exit, 
and wall. 

3.1 INTERIOR MESH POINTS 

The interior mesh point values are calculated by the second-order accurate, explicit 
MacCormack finite-difference method, using an alternating backward-forward scheme. The 
alternating backward-forward scheme used is illustrated in Fig. 1. The governing equations 
are left in nonconservative form. 

3.2 INLET MESH POINTS 

The inlet mesh points for subsonic flow are computed using a second-order, reference 
plane characteristic scheme. In this method, the partial derivatives with respect to 7/, ~" are 
computed in the initial value and solution surfaces using noncentered differences as in the 
MacCormack scheme. These approximations are then transferred to the right-hand side 
(RHS) in the governing equations, and the resulting system of equations is solved in the 
constant T/, ~" reference planes using a two-independent-variable characteristics scheme. 

The characteristics relations derived in Appendix A that relate the interior flow to the 
nozzle inlet flow are 

dp - p a d v  z : (a 2 ~b! -pa  ~b4+ ~5)dt 
for d~: - -  = v - a ( 1 4 )  

t i t  z 

9 
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where ~b is defined in Appendix A. 

~/~)z ~ "" 1 2 
B F F B B F F B B F F B B F F B 

Time Step-- i 2 3 4 5 6 7 8 

T i m e  S t e p  ~ I 2 3 4 5 6 7 8 

B . F  B F B F B F F B F B F B F B 

T i m e  S t e p  -.  1 2 3 4 5 6 7 8 

1 - First Step of Two-Step Method 

2 - Second Step o f  Two-Step Method 

B --Backward Difference 

F - Forward Difference 

Figure 1. Alternating scheme for the backward-forward 
option in MacCormack's method. 

Use of a reference-plane characteristics scheme requires the specification of the inlet flow 
angles as well as the stagnation conditions. The equations relating the total and static 
conditions are 

p T / p  = [I+(y-1) M2/2]Y/(Y-I) (15) 

T - t I T  = ] + ( y - t )  M2,,"2 (16) 

where 7 is the ratio of specific heats, M is the Mach number, T is the temperature, and the 
subscript T denotes the total (stagnation) condition. 

Equation (14) is solved using standard characteristic techniques, with the ~b terms 
evaluated in the initial value plane. Equations (14), (15), and (16), along with the inlet flow 
angles and the equation of state, form a system of five equations for the five dependent 
variables. 

10 
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3 . 3  E X I T  M E S H  P O I N T S  

For subsonic exit flow, a reference-plane characteristic scheme similar to the inlet scheme 
is used. The exit pressure is specified. The characteristic relations relating the interior flow to 
the nozzle exit flow, derived in Appendix A, are 

d v r = 6 2 dt 

d v 0 = ~b 3 dt 

d p - a  2dp = ~b 5dr 

(17) 

for d~: - -  = %. ( 1 8 )  dt 

( 1 9 )  

and 

d p + p a d v z  = (a2~b I - P a ~ 4 + ~ 5 ) d t  

for d~: - -  = v + a ( 2 0 )  dt z 

Equations (17), (18), (19), find (20), along with the exit pressure condition, form a system of 
five equations for the dependent variables. 

For supersonic flow, the flow conditions at the exit mesh points are computed by linear 
extrapolation. 

3.4 WALL MESH POINTS 

The wall mesh points are also computed using a reference-plane characteristic scheme. In 
this scheme, the derivatives with respect to/~, ~" are approximated and the resulting system.of 
equations is solved in the ~, ~" = constant reference planes. 

The characteristic relations derived in Appendix B which relate the interior flow to the 
flow at the nozzle walls are 

d p - a  2dp = 65dt 

~r dv 0 = dvr - a 2  

dx, r - ___~ dv z = 
a 1 

- ~ 2  ~b3 + dt 

( ~b2 -a-~ ¢4) dt 

(21) 

m 

for dr/ = V (22) 
dt 

(23) 

11 
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al  ~ a2 
d p + p a - - d v z + P a - - a ,  dvr + P a ~ - d v 0  

__ pa a2 a l  ) 
= ~5 4  a 2 0 1  +pa  fl ~ 2 + - - - - 0 3 + p  a __ ~4 dt a* r a* a* 

where 

and 

for dr/ ~ + aa ~ 
d ,  - (24) 

a • _~ f 1 2 + - -  4 a 
[ 

- -  a 2 v 0 
V = f l V r + ~  + a tvz  

r 

Equations (21), (22), (23), and (24), along with the wall boundary condition, form a system 
of five equations for the dependent variables. The wall boundary condition is given by 

v 0 
vzF z+v  r F r + - F  0 = 0 

r 

where F = constant defines the wall suface and Fz, Fr, and F0 are the corresponding partial 
derivatives. 

3.5 TIME STEP SIZE 

The time step size, At, is controlled by the well-known CFL condition which can be 
expressed as 

/ 

:{ [ ' ]I At < A/ (%;+ a) ]/(A~//'~) 2_ ]/'iA~32+ ]!(A¢)2 (25) 

where .V is the velocity magnitude. Experience gained in the present study indicates that 
values of A from 1.0 to 2.0 are satisfactory. 

4.0 RESULTS AND DISCUSSION 

Several adiabatic flow cases were selected to verify the numerical approach described in 
the preceding sections. The test cases were: 

12 
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!. Steady-state uniform flow in a cylindrical duct with an initial disturbance at one 
mesh point. 

2. Axisymmetric steady flow in a choked converging-diverging nozzle. The nozzle 

geometry was the same as for Cline's Case 1 (Ref. 2) and consisted of a 45-deg 
conical inlet section, a circular arc throat section, and a 15-deg conical diverging 
section (Fig. 2). 

3. Case 2 with a nonaxisymmetric swirl induced by a " b u m p "  in the otherwise 
uniform inlet total pressure .distribution. 

4. Case 2 with the computational axis off:set various amounts from the nozzle axis, 
which simulates complex 3-D flow fields. 

Figure 2. Axisymmetric nozzle geometry. 

Cases ! and 2 were used to debug and verify the computer program for rather simple 
flows with known steady-state solutions. For Case l, the solution relaxed smoothly toward 

uniform flow. (In none of the test cases did the solution at very large times tend to diverge 
from the known steady solution). The steady-state solution for Case 2 was negligibly 
different from the results reported by Cline. 

13 
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A converged steady solution obtained for Case 3 indicates that the numerical approach is 

applicable to predicting the effect of nonsymmetrical inlet profiles on the flow in 
axisymmetric nozzles. 

Figure 3. Computational mesh in throat plane for 
case 4 (20-percent offset). 

For Case 4, the computational axis was offset from the axisymmetric nozzle axis by 6, 

10, and 20 percent of the nozzle throat radius, r*. The computational mesh in the throat 

plane is illustrated in Fig. 3 for 20-percent offset. The meshes used and the run times on the 

Cray-I computer are summarized in Fig. 4 for the three axis offsets. For all three offsets, the 

steady-state static pressures throughout the flow field differed less than one percent from 

those calculated with the axisymmetric Cline program (which correlate well with 

14 
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experiment). These computations o f  axisymmctric nozzle flow, done the "hard  way" with 

the 3-D program, indicate that the program is acceptably accurate and is capable of  
computing 3-D subsonic-transonic flow. 

With one exception, all solutions were obtained without application of  smoothing or 

damping techniques to maintain stability. The exception was Case 4c, with 20-percent axis 

offset; in that one case, stability could not be achieved without a modification of  

MacCormack's  scheme which adds a second order truncation error and has the effect of  an 

artificial viscosity. Whether the use of  such damping techniques can be avoided by proper 
mesh selection remains a subject for further investigation. 

fNozzle Axis 

m I 

~kk--- Axis of 
Comput at ion al 

d 

Run Time, 
Case Offset/r* Grid man (Cray) 

4a 0 . 0 6  21 x 8 x 8 0 . 3 7  

4b 0 . 1 0  21 x 12 x 12 3 . 7 0  

4c 0 . 2 0  21 x 12 x 18 1 0 . 1  

Figure 4. Axisymmetric nozzle with offset computational axis. 

5.0 CONCLUDING REMARKS 

The Cline numerical approach, which is applicable to planar and axisymmetric nozzle 

flows, has been successfully extended to three-dimensional flows in this study. Results 

obtained for the various test flows indicate that the present computer program is applicable 

15 



A E D C-T R -80-56 

to prediction of the effect of nonsymmetric inlet profiles on the flow in axisymmetric nozzle 
geometries. In addition, the computer program seems well-suited to the computation of the 
flow fields in relatively simple 3-D nozzle geometries. However, additional work remains to 
be done in extending the program to arbitrary and complex 3-D geometries. 
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A P P E N D I X  A 

C H A R A C T E R I S T I C  R E L A T I O N S  FOR INLET A N D  EXIT M E S H  P O I N T S  

Governing Equations 

The governing Eqs. (18) through (22) can be written as 

a 2 P 
+ a l  p ( V z )  = (p)t +~ (p)~+ ~p(,,)~ + --;- ("o)~ 

- (o)¢+ ,,,.(p)e+ ~o(,'o)¢+ o(v,) e T (A-I)  

+ (v :} (Vr)t+V(vr)v/ ~ (p)T] = - z(Vr)~ :+ ~ T  (Vr) c - (A-2) 

+=2 {~.~ (vo)C Vz(VO) V, v0 8 } ("0),+ V("o )~  ~r (p)~ = - + + ; +~r (p)~ (A-3) 

- f ,06'0¢ (v),+ v (v z)~ + 7 cp)~ : - , 
%. 

% -: ((p)~ + V%) = -~ v o <p~¢ + v,. (p)~ (P)t V + 

L 

+ v,.(vz)~+ ~ Cp) e (A-4) 

m 

where V = flVr + cx2 v0/r + c~n, Vz is the tangential condition 

Defining 

~b I = RIIS of (A-l) 

~2 = RIIS of (A-2) 

~3 = RIIS of (A-3) 

~4 = RIIS of (A-4) 

'~5 = FIHS of (A-5) 

17 
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then the system of governing Equations (A-i) through (A-5) can be written in vector 
notation as 

where 

A~t.-BWr/ -- F (A-6) 

Vr §~2 

~l = v~ and ~" = ~3 

vz ~b4 i 

P ~s 

and with the A and B coefficient matricies as 

A = 

l 0 0 0 0 

0 ] 0 " 0  0 

0 0 1 0 0 

0 0 0 1 0 

- a  2 0 0 0 l 

and 

B =  

~p a 2 P  
- -  a l p  

r 

o ~ o o 

o o v o 

0 0 0 

-a 2 ~} 0 0 

v 

0 

a 2 

pr 

a 1 

P 

18 
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Defining Characteristics 

The theory of eigenvalues is used to derive the equations of the characteristics. The 
eigenvalues are defined as 

A = dr/ 
d-'T" (A-7) 

The total derivative of the W vector is 

dW dr/ 
dt - Wr/ = Wt + )L #~ (A-S) 

which, coupled with the vector equation, Eq. (A-6), yields 

at (A-9) 

The eigenvalues and eigenvectors (A" i) satisfy the inner product relation, based on Eq. (A-9), 

or 

where (B - kA)* signifies the transpose of the (B - kA) matrix. 

These matrices are 

N 

(B - ~A) 
R 

(V-A) tSp a2P alp 0 
F 

o (v - )~) o o ~ / o  

o o (v -~)  o "2 
pr 

a 1 o o o (~ -~) _ 
P 

19 
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and 

(B - ~.~)* 
m 

(~ -:,) 

/3p 

a2P 
r 

alp 

o 

o o o .,,2 (~,, _>,) 

~-;~ o o o 

0 ~ " - A  0 0 

o o V-A o 

p pr p 
I 

The eigenvalues are obtained from the determinate relationship 

, ( ~ ' - A . R ' ) * ,  = (V-k)s-a2(V-k) Ffl2(~-k)2+(~"-k) f a2- (~"-k) 
L [ r 2 

E 
+ (V_~,),,2~j = o 

I 

(A-12) 

The resulting eigenvalue equations, which describe the characteristics, are 

C v - ; ~ )  3 -- o 

and 

+7+o  _ - o  

(A-13) 

(A-14) 

Equation (A-! 3) is easily solved for Xl, k2 and X3 characteristics, 

Equation (A-14) is solved for X4 and Xs characteristics, 

= = -- a* ~4 '~5 V + a 

where 

a *  = ~ 2  t - - - + ~  

r 2 

(A-U) 

(A-16) 
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Compat ibi l i ty  Relat ions 

To derive the compatibility relations along the characteristics, the eigenvectors which 
define the characteristics must satisfy 

B - A  i A ) , A  i -  = 0 (A-17) 

m 

fo r  XI,2,3 ---- V, or 

m 

0 0 0 0 0 

f l /  p o o o o 

a2P 
0 0 0 0 

r 

alP 0 0 0 0 

a 2 a 1 
o flip o pr p 

m 

Ai 

m I :° 
The resulting eigenvectors are 

AI, 2, 3 

n 

also, for M,5 = V + a~*  

o 0 -I 

0 a 2 r  

-- 0 , - /~  

0 0 

t 0 

0 

a 1 

0 

0 

m 

- (+aa* )  0 0 0 a 2 (+ aa*)  

l ip - ('= aa*) 0 0 0 

a2P 0 - ( :  aa~) 0 0 

a I P 0 0 - (~_aa ~) 0 

a 2 
0 /~ r a I - p ( +  aa*) 

Ai 

(A-18)  

3 
I 

I:o 
I 

J 
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the eigenvectors are 

A4, 5 = 

m 

- (+_aa*) 4 

- ~ p (+-aa ~) 3 

_ a2p (_+ aa*) 3 
r 

- a  l p (+- aa*)  3 

- ( : a a * )  2 a* 2 

(A-19) 

The compatibility relations along the characteristics are, using the eigenvectors and Eq. 
(A-I 1), 

dt 

~1' dt 

d ~  
r 

~ 2  dt 

dv 0 

¢ 3  dt 

d% 
7. 

,04 
dt 

~5 + a2 d_p_ dp 
dt dt 

for 

m 

0 

0 

A l = 0 ' ~ 5  + a2 d_p dp _ 0 
dt dt 

0 

l 

22 
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a n d  

A 2 = 

0 

a2/r 

0 

o 

a 2 ( d v r )  ( dr0 ) 
-7 ¢ 2 - T  -,8 Ca- = 0  

and 

A 3 = 

m m 

0 

a 1 

0 

-/3 

0 

; a 1 
( ,Vr ( ° 

'1~2- dt / - f l  ~4 dt 

and 

_ (+_aa~) 4 

- ~ p  (+ aa*) 3 

a2P (±a a.)3 
I "  

- a  1 P (+-- aa*) 3 

- (q_- aa*) 2 a* 2 

_(~] dp (~2 dvr --'~-t )(+a~a*)4- - d ' - - t - ) f lP(~aa*)3-(  ~3 dvO r - T )  ~2_P (±.a,}3 

-- '~ 'I ' -  "-~t  a l p -  - "~5+  dt dt (+-.aa'~)2a * = 0 

23 
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o r  

*+P/~advr * + - P - 7 - a - -  ~= .~5 + a 2 ~ l  dp 4__pa I a d v  z a "  

4_pf la  '~2 * ± + a  I p a ~  * dt 
r a *  

Compatibility relations for (~,~') constant reference plane are 

and 

dp - a 2 dp --- ,~. dt 

~r 
d,, /3r dv 0 = -~-2  ~93 r a2  

dVr - a l  z 

, for ,__IT/ 
d l  

dp 4= p a  I a ~ ~= p[J a ~ +_ pa  2 a 
a *  a = a *  

( , o) -- 05+-a2 t~ l+P[3av ' , ' 2 / /a~  = - - p a O a / a ~  + a l p a O t / ' *  dt 
' ;' r ' ; ' ,, 

, for d__~ 
dt 

= ~,' +_ a a  ~ 
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APPENDIX B 
CHARACTERISTIC RELATIONS FOR WALL MESH POINTS 

Governing Equations 

The governing Eqs. (18) through (32) can be written as 

a2 v 0 
(P)t + P ( V z ) ~  + V z (P)~" = - V (p)~ + r (P)v 

8 v 0 
+ -7- (p) ~" 

8 "P"r } ( ) . ~ _ ( )  - ()¢ ( ) ~ - - -  a2P vo + r P vo + a l p  Vz 71 r +tip Vr r/ r 
(B-I) 

(v,)+v (v, = -  ~"(v, +T( - . ;  ; + r (B-2) 

+ a 2 v~ 8~,0 Vr vo 
( v o ) ~ +  v ~ ( ~ o ) ~  = - ~ ( v o )  v - 7 -  (vo)v+--;-("o)~+ - - ; -  

a2 8 (p)~. 
pr (P)T/- 9"-7 

} 
(B-3) 

I { + a 2 v~ 
(vz) ' + v, (vz)+ ~ (F,)~ : - ~ (v,)v ; (Vz) ~ 

°1 } 
+ m (p)17 P 

4. 

(B-4) 

where 

a2 
(P)t - a2 Vz (P)~+ Vz (P)~" -a2  (P)t = - ~ (P)r; + -7 

_a2 I a2 vo ~v 0 II + 7 v0 (P)d. V (P)r/" r (P)r/+ ---7-- (P)~ 

~,' = ~ V r + a  I v z 

vo (P)r/ 

(B-5) 
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and  

~1 = RIIS of (B-I) 

• ~2 = RIIS of (B-2) 

~3 -: RIIS of (B-3) 

~4 -- Rl lSoftB-J)  

~5 = RIlS of (B-5) 

The theory of  eigenvalues, defined in Appendix A, is used to derive the equations of  the 
characteristics and compatibility relations. 

Equations (B-l) through (B-5) in vector notation are 

where 

a n d  

ii -_ 

P ~-~.'~2 
V r 

~0 and ~'~- t62 

t.~ 3 

_ P _  04 

1 0 0 0 0 

o 1 0 0 0 

0 0 l 0 0 

0 0 0 ] 0 

- a  2 0 0 0 1 
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t h e n  

B 

V 
Z 

0 

0 

0 

- - a  2 v 
Z 

0 0 

v 0 
Z 

0 v 
Z °  

0 0 

0 0 

m 

p 0 

0 0 

0 0 

] 
V z p 

0 V 
Z 

m 

(v z - ~ )  0 0 p 0 

0 (v z - A) 0 0 0 

0 0 (v z - , \ )  0 0 

0 0 0 ( v  - h )  _1 
P 

- a 2 ( v  z - k )  0 0 0 (v z - h )  

I 

( v  - X )  

0 

= 0 

P 

0 

0 0 0 - a 2 ( v  z - h )  

(v z - ~,) 0 0 O. 

0 (v z - ,~) 0 0 

0 0 (v z - A) 0 

0 0 1 

h l  = X2 = h3  = Vz = = +- a A 4 A 5 v z 
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The  eigenvectors  and  eigenvalues satisfy 

[ ~  -- 
- ~A)* 

f o r k l  = X2 = X3 = Vz 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

p 0 0 0 0 

0 0 0 1/p 0 

then 

,A,I = 0 

A 1 

A 2 

A 3 = 

A 4 

A S 
- m 

A ] , 2 ,  3 = 

m 

0 

I 

0 

0 

0 

q m 

i 0 

0 

1 

0 

0 

forM,s=v¢+_ a 

results 

"-a 

0 

0 

0 

0 

b 

~ a  

0 

0 

0 

0 

0 

~ a  

0 

0 

0 

0 

0 

~ a  

I 

P 

m 

+-i 3~ Ai -- 
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g " a A l + - a 3  A 5 = 0 

P A l Y a  A 4 = 0 

I A  4 a A-  0 p o 

2 
A I =  + a  A 5 

A1 = + a A4 
P 

' A 4 = _~ u p A 5 

let As = 1 

Then A 4  = - ~a, A~ = a 2 

and 

A 4 = A 5 = 

a 2 

0 

0 

+ pa 

1 I 

The compatibility relations along the characteristics are, using the eigenvectors 

d t ] '  = 0 

dt 

m 

q,l-~ 
dt 

d v  
r 

~2 dt 

d "B 
'63 d, 

d v  Z 

64 dt 

'~5 ÷ a2 dp dP 
dt dt 
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f o r  

. i  

A I = 

0 

1 

0 

Io  

0 

; ¢2 

d v i .  ° 

dt 
- 0 

A 2 = 

m 

0 

0 

1 ; ~3 

0 

0 

dv 0 

dt 
- 0 

A 3 = 

0 

0 

dp dP a 2 
0 ; ~5  + , 

0 

] 

m 

a 2 

- 0 

C o m p a t i b i l i t y  r e l a t ions  f o r  (r/,~) c o n s t a n t  r e f e r e n c e  p l a n e s  a re  
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C[V r = ~.II 2 dt 1 
clv 0 = ~b 3 ch for, d_~ 

dt 

dP - a 2 dp ~ dt = ~5 

= V 
Z 

dP +-padvz = la2~bl +-" pa~4+~b5) dt t = vz__.a 
dt 
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A 

a 

A,B 

Fz, Fr, Fe 

P 

PT 

R 

r 

rw 

r* 

T 

t 

TT 

V 

v 

Vr 

Vz 

V 

Wt, W, 1, W~ 

W 

Z 

At 

3' 

NOMENCLATURE 

Premultiplier for the time step 

Speed of sound 

Coefficient matrices 

Local wall slopes 

Static pressure 

Total pressure 

Gas constant 

Radial coordinate 

Wall radius 

Nozzle throat radius 

Static temperature 

Time 

Total temperature 

Velocity magnitude 

Circumferential velocity component 

Radial velocity component 

Axial velocity component 

Tangential velocity condition 

Partial derivative dependent variable vectors 

Dependent variable vector ., 

Axial coordinate 

Time step size 

Ratio of specific heats 

, 32 



I 

0 

Ai 

k 

Q 

alaz, alar, alaO 

A E DC-TR -80-56 

Circumferential coordinate 

Eigenvectors 

Eigenvalues 

Transformed spatial coordinates corresponding to (z, r, 0) 

Density 

Null vector 

Partial derivative operators 

Transpose 

Dot product vector operator 
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